03C15 03C16 04C18 05C18 05C19 NC7	1.313 (3) 1.461 (4) 1.194 (3) 1.320 (3) 1.467 (4) 1.377 (4)	C10—C18 C10—C15 C11—C12 C12—C13 C13—C14 C16—C17	1.525 (3) 1.535 (4) 1.358 (4) 1.412 (4) 1.346 (5) 1.470 (7)
N	1.434 (3) 1.470 (3)	C19—C20	1.489 (7)
C14—S—C11 C15—O3—C16 C18—O5—C19 C7—N—C10 C6—N—C10 C5—C6—N O1—C7—N N—C7—C8 C7—C8—C9 C11—C9—C8 C8—C9—C10 N—C10—C18	92.3 (2) 118.0 (3) 116.0 (2) 113.0 (2) 125.6 (2) 124.4 (3) 108.2 (2) 104.4 (2) 115.4 (2) 103.0 (2) 111.7 (2)	N-C10-C15 C18-C10-C15 N-C10-C9 C18-C10-C9 C15-C10-C9 C12-C11-C9 C12-C11-S C9-C11-S C9-C11-S C11-C12-C13 C14-C13-C12 C13-C14-S	110.2 (2) 112.1 (2) 101.2 (2) 109.9 (2) 111.3 (2) 129.3 (2) 120.4 (2) 112.8 (3) 113.1 (4) 111.5 (3)
C10—N—C7—C8 N—C7—C8—C9 C7—C8—C9—C10 C7—N—C10—C9	4.0 (3) 17.0 (3) -29.4 (3) -22.2 (3)	C8C9C10N NC10C15O2 NC10C18O4	30.8 (3) 98.5 (3) -17.0 (4)

Table 2. Hydrogen-bonding geometry (Å, °)

$D - H \cdot \cdot \cdot A$	DH	HA	$D \cdot \cdot \cdot A$	$D - H \cdots A$
C4—H4···O1 ⁱ	1.00 (3)	2.57 (3)	3.366 (3)	137 (3)
C12-H12···O4 ⁱⁱ	0.91 (4)	2.52 (4)	3.351 (5)	153 (3)
C14—H14· · ·O1 ⁱⁱⁱ	0.92 (5)	2.58 (5)	3.433 (6)	154 (4)
Symmetry codes: (i)	2-x, -y, 1-	z; (ii) $1-x$	-y, 2-z; (i	ii) $x - 1, y, z$.

The title structure was solved by direct methods and refined by full-matrix least-squares techniques. All H atoms were located from a difference Fourier map and refined isotropically.

Programs used for data collection, cell refinement and data reduction: XSCANS (Siemens, 1994); for structure solution and molecular graphics: SHELXTL/PC (Sheldrick, 1990); for structure refinement: SHELXL93 (Sheldrick, 1993); for geometrical calculations: PARST (Nardelli, 1983b).

The authors would like to thank the Malaysian Government and Universiti Sains Malaysia for research grant R&D No. 190-9609-2801. KC thanks the Universiti Sains Malaysia for a Visiting Post Doctoral Fellowship.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: MU1338). Services for accessing these data are described at the back of the journal.

References

- Laskin, A. I. & Lechevalier, H. A. (1984). In CRC Handbook of Microbiology, 2nd ed. Boca Raton, Florida: CRC Press, Inc.
- Nardelli, M. (1983a). Acta Cryst. C39, 1141-1142.
- Nardelli, M. (1983b). Comput. Chem. 7, 95-98.
- Nozaki, Y., Katayama, N., Tsubotani, S., Harada, S., Okazaki, H. & Nakao, Y. (1987). *Nature*, **325**, 179–180.
- Ray, J. K., Roy, B. C., Chinnakali, K., Razak, I. A. & Fun, H.-K. (1997). Acta Cryst. C53, 1622–1624.
- Ray, J. K., Sami, I., Kar, G. K., Roy, B. C. & Brahma, N. K. (1994). Bioorg. Med. Chem. 2, 1417–1419.
- Sheldrick, G. M. (1990). SHELXTL/PC User Manual. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Sheldrick, G. M. (1993). SHELX93. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.

© 1998 International Union of Crystallography Printed in Great Britain – all rights reserved

- Siemens (1994). XSCANS Users Manual. Version 2.1. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
 - Sivakumar, K., Fun, H.-K., Ray, J. K., Roy, B. C. & Nigam, G. D. (1995a) Acta Cryst. C51, 1942–1944.
 - Sivakumar, K., Fun, H.-K., Ray, J. K., Roy, B. C. & Nigam, G. D. (1995b) Acta Cryst. C51, 2444–2446.

Acta Cryst. (1998). C54, 370-371

2-Acetyl-5,8-dihydronaphthalen-1-ol

KANDASAMY CHINNAKALI,^a† HOONG-KUN FUN,^a KAMARAJ SRIRAGHAVAN^b AND VAYLAKKAVOOR T. RAMAKRISHINAN^c

^aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, ^bDepartment of Organic Chemistry, University of Madras, Guindy Campus, Chennai 600 025, India, and ^cDepartment of Organic Chemistry, University of Madras, Guindy Campus, Chennai 600 025, India. E-mail: hkfun@usm.my

(Received 19 August 1997; accepted 4 November 1997)

Abstract

The heavy-atom skeleton of the title molecule, $C_{12}H_{12}O_2$, is planar to within ± 0.023 (2) Å and an O— H...O intramolecular hydrogen bond contributes to this planarity.

Comment

Dihydronaphthalene derivatives are widely used as intermediates in the synthesis of several polycyclic phenols which are useful antifibrillatory agents, disinfectants and water softeners (Hauck *et al.*, 1977). Furthermore, hydroxy-ketone derivatives of naphthalene are useful in synthesizing the sub-units of daunomycinone and adiramycin, which are important anticancer drugs (Crouse *et al.*, 1981).

The title molecule, (I), as a whole, is planar within ± 0.023 (2) Å. The planarity is stabilized by an O— H···O intramolecular hydrogen bond involving atoms O1 and O2 [O1···O2 2.546 (2), H1O2···O1 1.65 (2) Å and O2—H1O2···O1 154 (2)°]. In the dihydrobenzene ring, the C_{sp2}—C_{sp3} distances C5—C6 [1.481 (2) Å] and C9—C10 [1.491 (2) Å] are longer than the C6—C7 [1.465 (2) Å] and C8—C9 [1.461 (3) Å] distances because of the steric interactions caused by the planarity of the dihydrobenzene ring. The C5—C6—C7 [115.1 (2)°] and C8—C9—C10 [115.5 (2)°] angles are also widened

[†] On leave from: Department of Physics, Anna University, Chennai 600 025, India.

from ideal tetrahedral values due to these interactions. The length of the C7---C8 bond $[1.327(2)^{\circ}]$ shows its double-bond nature.

In the crystal, molecules related by inversion lie in parallel planes 3.505 (1) Å apart, an optimum distance for $\pi - \pi$ stacking interactions. These two sets of planes are nearly orthogonal [dihedral angle $85.36(2)^{\circ}$] and are separated by a minimum non-bonding distance of 3.630 (2) Å between C6 and C2(x, $\frac{1}{2} - y$, $\frac{1}{2} + z$). This geometry indicates a possible side-on interaction. These pairs extend along the [011] direction to form infinite parallel chains.

Fig. 1. The structure of title compound showing 50% probability displacement ellipsoids and the atom-numbering scheme. H atoms are displayed as small circles with an arbitrary radius.

Experimental

5,8-Dihydronaphthyl acetate was prepared by acylation of 5,8dihydronaphthol using acetyl chloride and pyridine in dry benzene. Irradiation of 5,8-dihydronaphthyl acetate at 254 nm in dry ethyl acetate furnished the title compound (Sriraghavan & Ramakrishnan, 1997). Single crystals were obtained by slow concentration of a methanol solution of the compound.

Crystal data

Mo $K\alpha$ radiation
$\lambda = 0.71073 \text{ Å}$
Cell parameters from 33
reflections
$\theta = 5.5 - 12.5^{\circ}$
$\mu = 0.088 \text{ mm}^{-1}$
T = 293 (2) K
Rectangular
0.48 \times 0.36 \times 0.22 mm
Colourless

Data collection

Siemens P4 diffractometer	$\theta_{\rm max} = 27.50^{\circ}$
$\theta/2\theta$ scans	$h = -1 \rightarrow 11$
Absorption correction: none	$k = -1 \rightarrow 11$
2944 measured reflections	$l = -15 \rightarrow 15$
2207 independent reflections	3 standard reflections
1203 reflections with	every 97 reflections
$l > 2\sigma(l)$	intensity decay: <3%
$R_{int} = 0.021$	

Refinement

Refinement on F^2	$\Delta \rho_{\rm max} = 0.15 \ {\rm e} \ {\rm \AA}^{-3}$
$R[F^2 > 2\sigma(F^2)] = 0.040$	$\Delta \rho_{\rm min} = -0.13 \ {\rm e} \ {\rm \AA}^{-3}$
$wR(F^2) = 0.124$	Extinction correction:
S = 0.881	SHELXL93
2207 reflections	Extinction coefficient:
176 parameters	0.012 (4)
H atoms: see below	Scattering factors from
$w = 1/[\sigma^2(F_o^2) + (0.069P)^2]$	International Tables for
where $P = (F_o^2 + 2F_c^2)/3$	Crystallography (Vol. C
$(\Delta/\sigma)_{max} < 0.001$	

The structure was solved by direct methods and refined by full-matrix least-squares techniques. All H atoms were located from a difference Fourier map and refined isotropically. S.u.'s on C-C distances do not exceed 0.003 Å.

Data collection: XSCANS (Siemens, 1994). Cell refinement: XSCANS. Data reduction: XSCANS. Program(s) used to solve structure: SHELXTLIPC (Sheldrick, 1990). Program(s) used to refine structure: SHELXL93 (Sheldrick, 1993). Molecular graphics: SHELXTL/PC. Software used to prepare material for publication: SHELXTL/PC. Program used for molecular geometry: PARST (Nardelli, 1983).

The authors would like to thank the Malaysian Government and Universiti Sains Malaysia for research grant R&D No. 190-9609-2801. KC thanks the Universiti Sains Malaysia for a Visiting Post Doctoral Fellowship.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: BM1196). Services for accessing these data are described at the back of the journal.

References

- Crouse, D. J., Hurlbut, S. L. & Wheeler, D. M. S. (1981). J. Org. Chem. 46, 374-378.
- Hauck, F. P., Cimarusti, C. M. & Sundeen, J. E. (1977). Chem. Abstr. 86, 43447u.
- Nardelli, M. (1983). Comput. Chem. 7, 95-98.
- Sheldrick, G. M. (1990). SHELXTLIPC Users Manual. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Sheldrick, G. M. (1993). SHELX93. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.
- Siemens (1994). XSCANS Users Manual. Version 2.1. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Sriraghavan, K. & Ramakrishnan, V. T. (1997). Unpublished results.