$\mathrm{O} 3-\mathrm{C} 15$	$1.313(3)$	$\mathrm{C} 10-\mathrm{C} 18$	$1.525(3)$
$\mathrm{O} 3-\mathrm{C} 16$	$1.461(4)$	$\mathrm{C} 10-\mathrm{C} 15$	$1.535(4)$
$\mathrm{O} 4-\mathrm{C} 18$	$1.194(3)$	$\mathrm{C} 11-\mathrm{C} 12$	$1.358(4)$
$\mathrm{O} 5-\mathrm{C} 18$	$1.320(3)$	$\mathrm{C} 12-\mathrm{C} 13$	$1.412(4)$
$\mathrm{O} 5-\mathrm{C} 19$	$1.467(4)$	$\mathrm{C} 13-\mathrm{C} 14$	$1.346(5)$
$\mathrm{N}-\mathrm{C} 7$	$1.377(4)$	$\mathrm{C} 16-\mathrm{C} 17$	$1.470(7)$
$\mathrm{N}-\mathrm{C} 6$	$1.434(3)$	$\mathrm{C} 19-\mathrm{C} 20$	$1.489(7)$
$\mathrm{N}-\mathrm{C} 10$	$1.470(3)$		
$\mathrm{C} 14-\mathrm{S}-\mathrm{C} 11$	$92.3(2)$	$\mathrm{N}-\mathrm{C} 10-\mathrm{C} 15$	$110.2(2)$
$\mathrm{C} 15-\mathrm{O} 3-\mathrm{C} 16$	$118.0(3)$	$\mathrm{C} 18-\mathrm{C} 10-\mathrm{C} 15$	$112.1(2)$
$\mathrm{C} 18-\mathrm{O} 5-\mathrm{C} 19$	$116.0(2)$	$\mathrm{N}-\mathrm{C} 10-\mathrm{C} 9$	$101.2(2)$
$\mathrm{C} 7-\mathrm{N}-\mathrm{C} 10$	$113.0(2)$	$\mathrm{C} 18-\mathrm{C} 10-\mathrm{C} 9$	$109.9(2)$
$\mathrm{C} 6-\mathrm{N}-\mathrm{C} 10$	$125.6(2)$	$\mathrm{C} 15-\mathrm{C} 10-\mathrm{C} 9$	$111.3(2)$
$\mathrm{C} 5-\mathrm{C} 6-\mathrm{N}$	$119.2(2)$	$\mathrm{C} 12-\mathrm{C} 11-\mathrm{C} 9$	$129.3(2)$
$\mathrm{O} 1-\mathrm{C} 7-\mathrm{N}$	$124.4(3)$	$\mathrm{C} 12-\mathrm{C} 11-\mathrm{S}$	$110.3(2)$
$\mathrm{N}-\mathrm{C} 7-\mathrm{C} 8$	$108.2(2)$	$\mathrm{C} 9-\mathrm{C} 11-\mathrm{S}$	$120.4(2)$
$\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 9$	$104.4(2)$	$\mathrm{C} 11-\mathrm{C} 12-\mathrm{Cl} 3$	$112.8(3)$
$\mathrm{C} 11-\mathrm{C} 9-\mathrm{C} 8$	$115.4(2)$	$\mathrm{C} 14-\mathrm{C} 13-\mathrm{C} 12$	$113.1(4)$
$\mathrm{C} 8-\mathrm{C}-\mathrm{C} 10$	$103.0(2)$	$\mathrm{C} 13-\mathrm{C} 14-\mathrm{S}$	$111.5(3)$
$\mathrm{N}-\mathrm{C} 10-\mathrm{C} 18$	$111.7(2)$		
$\mathrm{C} 10-\mathrm{N}-\mathrm{C} 7-\mathrm{C} 8$	$4.0(3)$	$\mathrm{C} 8-\mathrm{C} 9-\mathrm{C} 10-\mathrm{N}$	$30.8(3)$
$\mathrm{N}-\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 9$	$17.0(3)$	$\mathrm{N}-\mathrm{C} 10-\mathrm{C} 15-\mathrm{O} 2$	$98.5(3)$
$\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 9-\mathrm{C} 10$	$-29.4(3)$	$\mathrm{N}-\mathrm{C} 10-\mathrm{C} 18-\mathrm{O} 4$	$-17.0(4)$
$\mathrm{C} 7-\mathrm{N}-\mathrm{C} 10-\mathrm{C} 9$	$-22.2(3)$		

Table 2. Hydrogen-bonding geometry $\left(A^{\circ},^{\circ}\right)$

D-H. \cdot A	D-H	H...A	D. . A	D-H. . . A
$\mathrm{C} 4-\mathrm{H} 4 . \mathrm{O} \mathrm{Ol}^{\text {i }}$	1.00 (3)	2.57 (3)	3.366 (3)	137 (3)
C12-H12 . $\mathrm{O}^{\text {ii }}$	0.91 (4)	2.52 (4)	3.351 (5)	153 (3)
$\mathrm{Cl} 4-\mathrm{H14} \cdots \mathrm{Ol}^{\text {iii }}$	0.92 (5)	2.58 (5)	3.433 (6)	154 (4)

Symmetry codes: (i) $2-x,-y, 1-z$; (ii) $1-x,-y, 2-z$; (iii) $x-1, y, z$.
The title structure was solved by direct methods and refined by full-matrix least-squares techniques. All H atoms were located from a difference Fourier map and refined isotropically.

Programs used for data collection, cell refinement and data reduction: XSCANS (Siemens, 1994); for structure solution and molecular graphics: SHELXTL/PC (Sheldrick, 1990); for structure refinement: SHELXL93 (Sheldrick, 1993); for geometrical calculations: PARST (Nardelli, 1983b).

The authors would like to thank the Malaysian Government and Universiti Sains Malaysia for research grant R\&D No. 190-9609-2801. KC thanks the Universiti Sains Malaysia for a Visiting Post Doctoral Fellowship.

[^0]
References

Laskin, A. I. \& Lechevalier, H. A. (1984). In CRC Handbook of Microbiology, 2nd ed. Boca Raton, Florida: CRC Press, Inc.
Nardelli, M. (1983a). Acta Cryst. C39, 1141-1142.
Nardelli, M. (1983b). Comput. Chem. 7, 95-98.
Nozaki, Y., Katayama, N., Tsubotani, S., Harada, S., Okazaki, H. \& Nakao, Y. (1987). Nature, 325, 179-180.
Ray, J. K., Roy, B. C., Chinnakali, K., Razak, I. A. \& Fun, H.-K. (1997). Acta Cryst. C53, 1622-1624.

Ray, J. K., Sami, I., Kar, G. K., Roy, B. C. \& Brahma, N. K. (1994). Bioorg. Med. Chem. 2, 1417-1419.
Sheldrick, G. M. (1990). SHELXTLPC User Manual. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Sheldrick, G. M. (1993). SHELX93. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.

Siemens (1994). XSCANS Users Manual. Version 2.1. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Sivakumar, K., Fun, H.-K., Ray, J. K., Roy, B. C. \& Nigam, G. D. (1995a) Acta Cryst. C51, 1942-1944.
Sivakumar, K., Fun, H.-K., Ray, J. K., Roy, B. C. \& Nigam, G. D. (1995b) Acta Cryst. C51, 2444-2446.

Acta Cryst. (1998). C54, 370-371

2-Acetyl-5,8-dihydronaphthalen-1-ol

Kandasamy Chinnakall, ${ }^{a} \dagger$ Hoong-Kun Fun, ${ }^{a}$ Kamaraj Sriraghavan ${ }^{b}$ and Vaylakkavoor T. Ramakrishnan ${ }^{c}$
${ }^{a} X$-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, ${ }^{b}$ Department of Organic Chemistry, University of Madras, Guindy Campus, Chennai 600 025, India, and ${ }^{\text {c Department of }}$ Organic Chemistry, University of Madras, Guindy Campus, Chennai 600 025, India. E-mail: hkfun@usm.my

(Received 19 August 1997; accepted 4 November 1997)

Abstract

The heavy-atom skeleton of the title molecule, $\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{O}_{2}$, is planar to within ± 0.023 (2) \AA and an O $\mathrm{H} \cdots \mathrm{O}$ intramolecular hydrogen bond contributes to this planarity.

Comment

Dihydronaphthalene derivatives are widely used as intermediates in the synthesis of several polycyclic phenols which are useful antifibrillatory agents, disinfectants and water softeners (Hauck et al., 1977). Furthermore, hydroxy-ketone derivatives of naphthalene are useful in synthesizing the sub-units of daunomycinone and adiramycin, which are important anticancer drugs (Crouse et al., 1981).

The title molecule, (I), as a whole, is planar within ± 0.023 (2) \AA. The planarity is stabilized by an O $\mathrm{H} \cdots \mathrm{O}$ intramolecular hydrogen bond involving atoms O 1 and $\mathrm{O} 2[\mathrm{O} 1 \cdots \mathrm{O} 2.546(2), \mathrm{H} 1 \mathrm{O} 2 \cdots \mathrm{O} 1.65$ (2) \AA and $\left.\mathrm{O} 2-\mathrm{H} 1 \mathrm{O} 2 \cdots \mathrm{O} 154(2)^{\circ}\right]$. In the dihydrobenzene ring, the $\mathrm{C}_{s p^{2}}-\mathrm{C}_{s p^{3}}$ distances $\mathrm{C} 5-\mathrm{C} 6[1.481$ (2) \AA] and C9-C10 11.491 (2) \AA] are longer than the C6-C7 [1.465 (2) A] and C8-C9 [1.461 (3) A] distances because of the steric interactions caused by the planarity of the dihydrobenzene ring. The C5-C6-C7 [115.1 (2) ${ }^{\circ}$] and $\mathrm{C} 8-\mathrm{C} 9-\mathrm{Cl} 0\left[115.5(2)^{\circ}\right]$ angles are also widened
\dagger On leave from: Department of Physics, Anna University, Chennai 600 025, India.
from ideal tetrahedral values due to these interactions. The length of the $\mathrm{C} 7-\mathrm{C} 8$ bond [1.327(2) ${ }^{\circ}$] shows its double-bond nature.

(I)

In the crystal, molecules related by inversion lie in parallel planes 3.505 (1) \AA apart, an optimum distance for $\pi-\pi$ stacking interactions. These two sets of planes are nearly orthogonal [dihedral angle $85.36(2)^{\circ}$] and are separated by a minimum non-bonding distance of 3.630 (2) \AA between C 6 and $\mathrm{C} 2\left(x, \frac{1}{2}-y, \frac{1}{2}+z\right)$. This geometry indicates a possible side-on interaction. These pairs extend along the [011] direction to form infinite parallel chains.

Fig. 1. The structure of title compound showing 50% probability displacement ellipsoids and the atom-numbering scheme. H atoms are displayed as small circles with an arbitrary radius.

Experimental

5,8-Dihydronaphthyl acetate was prepared by acylation of 5,8dihydronaphthol using acetyl chloride and pyridine in dry benzene. Irradiation of 5,8 -dihydronaphthyl acetate at 254 nm in dry ethyl acetate furnished the title compound (Sriraghavan \& Ramakrishnan, 1997). Single crystals were obtained by slow concentration of a methanol solution of the compound.

Crystal data

$\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{O}_{2}$
$M_{r}=188.22$
Monoclinic
$P 2_{1} / c$
$a=8.9674$ (8) \AA
$b=9.0604$ (9) \AA
$c=11.8823(11) \AA$
$\beta=96.087(8)^{\circ}$
$V=960.0(2) \AA^{3}$
$Z=4$
$D_{x}=1.302 \mathrm{Mg} \mathrm{m}^{-3}$
D_{m} not measured

Data collection

Siemens $P 4$ diffractometer
$\theta / 2 \theta$ scans
Absorption correction: none
2944 measured reflections
2207 independent reflections
1203 reflections with
$I>2 \sigma(I)$
$R_{\text {int }}=0.021$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.040$
$w R\left(F^{2}\right)=0.124$
$S=0.881$
2207 reflections
176 parameters
H atoms: see below
$w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.069 P)^{2}\right]$
where $P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3$
$\theta_{\text {max }}=27.50^{\circ}$
$h=-1 \rightarrow 11$
$k=-1 \rightarrow 11$
$l=-15 \rightarrow 15$
3 standard reflections every 97 reflections intensity decay: <3\%
$\Delta \rho_{\max }=0.15 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\min }=-0.13 \mathrm{e}^{-3}$
Extinction correction:
SHELXL93
Extinction coefficient:
0.012 (4)
Scattering factors from
International Tables for
Crystallography (Vol. C)
$(\Delta / \sigma)_{\text {max }}<0.001$
The structure was solved by direct methods and refined by full-matrix least-squares techniques. All H atoms were located from a difference Fourier map and refined isotropically. S.u.'s on $\mathrm{C}-\mathrm{C}$ distances do not exceed $0.003 \AA$.

Data collection: XSCANS (Siemens, 1994). Cell refinement: XSCANS. Data reduction: XSCANS. Program(s) used to solve structure: SHELXTLPC (Sheldrick, 1990). Program(s) used to refine structure: SHELXL93 (Sheldrick, 1993). Molecular graphics: SHELXTLPC. Software used to prepare material for publication: SHELXTL/PC. Program used for molecular geometry: PARST (Nardelli, 1983).

The authors would like to thank the Malaysian Government and Universiti Sains Malaysia for research grant R\&D No. 190-9609-2801. KC thanks the Universiti Sains Malaysia for a Visiting Post Doctoral Fellowship.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: BMI196). Services for accessing these data are described at the back of the journal.

References

Crouse, D. J., Hurlbut, S. L. \& Wheeler, D. M. S. (1981). J. Org. Chem. 46, 374-378.
Hauck, F. P., Cimarusti, C. M. \& Sundeen, J. E. (1977). Chem. Abstr. 86, 43447u.
Nardelli, M. (1983). Comput. Chem. 7, 95-98.
Sheldrick, G. M. (1990). SHELXTLPC Users Manual. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Sheldrick, G. M. (1993). SHELX93. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.
Siemens (1994). XSCANS Users Manual. Version 2.1. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Sriraghavan, K. \& Ramakrishnan, V. T. (1997). Unpublished results.

[^0]: Supplementary data for this paper are available from the IUCr electronic archives (Reference: MU1338). Services for accessing these data are described at the back of the journal.

